
Quick Intro To Case Classes
Separation Of Concerns: Case Class Access Scope, Validation, And Derived Fields

Case Classes

The case class in scala is the most relevant feature in scala for handling data effectively.

The final qualifier makes sense because extending a case class may lead to inconsistencies and
performance issues as well (
https://gist.github.com/chaotic3quilibrium/58e78a2e21ce43bfe0042bbfbb93e7dc)

A case class provides a swiss knife of features to make your life easier when handling data.

Here is the list of the most popular features provided by the case class:

A convenient toString() method that will display all it’s field contents
A compare by-field-values, not be reference
A copy method for handling immutable data
Pattern matching for field extraction (perhaps better avoided)

With case classes, the toString method is invoked when you need to evaluate any object to a
string eg

Quick Intro To Case Classes

final case class Employee(firstName: String, lastName: String, ssn: String)

Covering The Key Features

Convenience toString Method

final case class Employee(firstName: String, lastName: String, ssn: String)

class EmployeeClass(firstName: String, lastName: String, ssn: String)

val employee = Employee("john", "wick", "111–11–1111")

val employeeClass = new EmployeeClass("john", "wick", "111–11–1111")

println(employee)

// Cool

https://gist.github.com/chaotic3quilibrium/58e78a2e21ce43bfe0042bbfbb93e7dc

With case classes, you can compare objects by their structure not by reference (default when
using plain classes). Here is an illustration on how it works vs plan classes:

Case classes are immutable by default. This means that modifying fields is not possible. However,
you can copy-modify case classes. eg:

// Employee(john,wick,111–11–1111)

println(employeeClass)

// Not cool. Prints a representation of the reference for this object

// Main$EmployeeClass$1@3f3afe78

Equality By Structure Not By Reference

final case class Employee(firstName: String, lastName: String, ssn: String)

class EmployeeClass(firstName: String, lastName: String, ssn: String)

val employee1 = Employee("john", "wick", "111–11–1111")

val employee2 = Employee("john", "wick", "111–11–1111")

val employee3 = Employee("robert", "mccall", "222–222–2222")

println(employee1 == employee2)

// true

println(employee1 == employee3)

// false

val employeeClass1 = new EmployeeClass("john", "wick", "111–11–1111")

val employeeClass2 = new EmployeeClass("john", "wick", "111–11–1111")

println(employeeClass1 == employeeClass2

// false

Built-In copy Method

Note: cases classes may not be mutable by default, but they can be mutable eg:

You can extract the fields of a case class by using pattern matching eg:

val employeeWithModifiedLastName = employee1.copy(firstName = "Jon")

println(employeeWithModifiedLastName)

// Employee(Jon,wick,111–11–1111)

println(employee1)

// FYI, employee1 is not changed

// Employee(john,wick,111–11–1111)

final case class MutableEmployee(var firstName: String, var lastName:

 String, var ssn: String)

val mutableEmployee = MutableEmployee("gravik", "skrull", "333–33–3333")

println(mutableEmployee)

// MutableEmployee(gravik,skrull,333–33–3333)

mutableEmployee.firstName = "talos"

println(mutableEmployee)

// MutableEmployee(talos,skrull,333–33–3333)

Using Pattern Matching For Field Extraction

employee1 match {

 case Employee(firstName, lastName, ssn) =>

 println(s"Name is $firstName $lastName and ssn is $ssn")

 // Name is john wick and ssn is 111–11–1111

}

// No need to define unused fields

employee1 match {

 case Employee(firstName, _, _) =>

 println(s"First name is $firstName")

 // First name is john

}

The reason I discourage pattern match extractions for scala case classes is that

correct extractions depends on the correct order of the fields. Also, adding an extra

field to the case class will cause a compile error. Here is an example where the wrong

order creates a bug:

In this page we did the basic thing: introduced case classes and it's basic features: The toString
method, the equality by structure, the copy method and my least favorite field extraction by
pattern matching.

// wrong order!

employee1 match {

 case Employee(lastName, firstName, ssn) =>

	println(s"First name is $firstName, last name is $lastName and ssn is $ssn")

 // First name is wick, last name is john and ssn is 111–11–1111

}

final case class WideCaseClass(name: String, s1: String, s2: String, s3:

String,

 r1: String, r2: String, r3: String, t1: String, t2: String,

t3: String)

val wideClass: WideCaseClass = WideCaseClass("a", "b", "c", "d", "e", "f", "g", "h", "i", "j")

wideClass match

case WideCaseClass(_, _, _, _, _, r1, _, _, _, _) => println(r1)

// You've got it wrong by one position! Too bad!!!

// Type safety won't help you here.

It may not be intuitive why scope and validation are together at this moment. Let me explain why
these two topics should go together.

The most basic form of case class validation looks like the following. It works well but may not be
ideal.

Separation Of Concerns:
Case Class Access Scope,
Validation, And Derived
Fields

Basic Case Class With Validation

final case class EmployeeValidated(firstName: String, lastName: String, ssn: String):

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 require(ssn.nonEmpty)

// Runs ok

val employee1: EmployeeValidated = EmployeeValidated("John", "Wick", "111-11-1111")

// Runtime exception thrown due to "require(lastName.nonEmpty)" validation above

val employee2: EmployeeValidated = EmployeeValidated("Michael", "", "222-22-2222")

Separating Validation And Case Classes

We typically want the case class to just be a placeholder of data. Mixing up validation, calculations
and data in the same place will make case classes larger and bloated. For this purpose we want to
use companion objects eg

final case class Employee(firstName: String, lastName: String, ssn: String)

object Employee:

 val ssnToFullName: Map[String, (String, String)] = Map(

 "111-11-1111" -> ("John", "Wick"),

 "222-22-2222" -> ("Michael", "Bubble")

)

 val fullNameToSsn: Map[(String, String), String] = ssnToFullName.map {case (k,v) =>

(v,k)}

 def fromAllFields(firstName: String, lastName: String, ssn: String): Employee =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 require(ssn.nonEmpty)

 Employee(firstName, lastName, ssn)

 def fromSsn(ssn: String): Employee =

 require(ssn.nonEmpty)

 val (firstName: String, lastName: String) = ssnToFullName(ssn)

 Employee(firstName, lastName, ssn)

 def fromFullName(firstName: String, lastName: String): Employee =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 val ssn: String = fullNameToSsn((firstName, lastName))

 Employee(firstName, lastName, ssn)

// The following 3 println() should print the same data

val employee1FromBuilder = Employee.fromSsn("111-11-1111")

println(employee1FromBuilder)

val employee2FromBuilder = Employee.fromAllFields("John", "Wick", "111-11-1111")

println(employee2FromBuilder)

val employee3FromBuilder = Employee.fromFullName("John", "Wick")

println(employee3FromBuilder)

Now the problem with the code above is that anyone outside this file can directly build Employee
directly without validation. Ideally, we want to restrict this to guarantee data integrity. A way to
address this issue is to add a private qualifier to the case class right before the parenthesis eg

Restricting Access To Case Class Constructor

final case class EmployeePrivate private (firstName: String, lastName: String, ssn: String)

object EmployeePrivate:

 val ssnToFullName: Map[String, (String, String)] = Map(

 "111-11-1111" -> ("John", "Wick"),

 "222-22-2222" -> ("Michael", "Bubble")

)

 val fullNameToSsn: Map[(String, String), String] = ssnToFullName.map {case (k,v) =>

(v,k)}

 def fromAllFields(firstName: String, lastName: String, ssn: String): EmployeePrivate =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 require(ssn.nonEmpty)

 EmployeePrivate(firstName, lastName, ssn)

 def fromSsn(ssn: String): EmployeePrivate =

 require(ssn.nonEmpty)

 val (firstName: String, lastName: String) = ssnToFullName(ssn)

 EmployeePrivate(firstName, lastName, ssn)

 def fromFullName(firstName: String, lastName: String): Employee =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 val ssn: String = fullNameToSsn((firstName, lastName))

 Employee(firstName, lastName, ssn)

// The following 3 println() should print the same data

val employeePrivate1FromBuilder = EmployeePrivate.fromSsn("111-11-1111")

println(employee1FromBuilder)

val employeePrivate2FromBuilder = EmployeePrivate.fromAllFields("John", "Wick", "111-11-1111")

println(employee2FromBuilder)

Now you won't be able to instantiate EmployeePrivate directly. You will only be able to do it
through the companion object or any other method in the same file.

Note: be aware that the case class convenience methods, namely copy, will not be available when
you add the private qualifier eg:

In that case, you will have to implement the copy command in a method inside the companion
object. Keep in mind the companion object has access to all the private methods of the case class
and vice-versa.

We still want to stick to the idea of only keeping data in the case class and keep any logic outside

val employeePrivate3FromBuilder = EmployeePrivate.fromFullName("John", "Wick")

println(employeePrivate3FromBuilder)

// Code from a separate file

import CaseClassAccessScopeAndValidation.EmployeePrivate

// The following will create a compile error

val employee = EmployeePrivate("John", "Wick", "111-11-1111")

// method apply cannot be accessed as a member of

CaseClassAccessScopeAndValidation.EmployeePrivate.

// type from module class CaseClassAccessScopeAndValidation_AccessAtempt$.

// But the following will work just fine

val employee2 = EmployeePrivate.fromAllFields("John", "Wick", "111-11-1111")

// Code from same separate file as code sample above

val employee2 = EmployeePrivate.fromAllFields("John", "Wick", "111-11-1111")

// Following code will generate a compile error

val employee3 = employee2.copy(firstName = "hernan")

// from module class CaseClassAccessScopeAndValidation_AccessAtempt$

// method copy cannot be accessed as a member of

// (CaseClassAccessScopeAndValidation_AccessAtempt.employee :

CaseClassAccessScopeAndValidation.EmployeePrivate)

Keep Derived Fields Outside The Case Class

of it. Same thing applies to derived fields (fields that are a calculation of other fields in the case
class).

There are at least 2 ways we can do this. Method 1: Create a class that extends the case class
and a trait containing the derived field. And Method 2: Use scala extension.

Note: The author of this article prefers method 2 for looking cleaner and being more extensible.
Besides, we can still keep the case class final as well.

case class NonFinalEmployee(firstName: String, lastName: String, ssn: String)

// Method 1 for adding derived fields

// Use a trait and extend Employee case class with trait containing the derived field

trait FullNameDerived:

 self: NonFinalEmployee =>

 def fullNameDerived1 =

 s"$firstName $lastName"

class EmployeeData(firstName: String, lastName: String, ssn: String)

 extends NonFinalEmployee(firstName, lastName, ssn) with FullNameDerived

val employeeData: EmployeeData = new EmployeeData("John", "Wick", "111-11-1111")

println(employeeData.fullNameDerived1)

// Method 2 for adding derived fields

// Use extension method and extend Employee with derived field instead

extension (c: Employee)

 def fullNameDerived2: String=

 s"${c.firstName} ${c.lastName}"

val employee = Employee ("John", "Wick", "111-11-1111")

println(employee.fullNameDerived2)

