
Case Classes
Quick Intro To Case Classes
Separation Of Concerns: Case Class Access Scope, Validation, And Derived Fields

Data Validation
Avoid Throwing Exceptions
Using Either[E, A] And MapN For Data Validation
Use Union Types Instead Of Either[E, A] For A More Efficient Validation?

Data And Scala
Tech Blogs

Case Classes

Case Classes

The case class in scala is the most relevant feature in scala for handling data effectively.

The final qualifier makes sense because extending a case class may lead to inconsistencies and
performance issues as well (
https://gist.github.com/chaotic3quilibrium/58e78a2e21ce43bfe0042bbfbb93e7dc)

A case class provides a swiss knife of features to make your life easier when handling data.

Here is the list of the most popular features provided by the case class:

A convenient toString() method that will display all it’s field contents
A compare by-field-values, not be reference
A copy method for handling immutable data
Pattern matching for field extraction (perhaps better avoided)

With case classes, the toString method is invoked when you need to evaluate any object to a
string eg

Quick Intro To Case Classes

final case class Employee(firstName: String, lastName: String, ssn: String)

Covering The Key Features

Convenience toString Method

final case class Employee(firstName: String, lastName: String, ssn: String)

class EmployeeClass(firstName: String, lastName: String, ssn: String)

val employee = Employee("john", "wick", "111–11–1111")

val employeeClass = new EmployeeClass("john", "wick", "111–11–1111")

println(employee)

https://gist.github.com/chaotic3quilibrium/58e78a2e21ce43bfe0042bbfbb93e7dc

With case classes, you can compare objects by their structure not by reference (default when
using plain classes). Here is an illustration on how it works vs plan classes:

Case classes are immutable by default. This means that modifying fields is not possible. However,
you can copy-modify case classes. eg:

// Cool

// Employee(john,wick,111–11–1111)

println(employeeClass)

// Not cool. Prints a representation of the reference for this object

// Main$EmployeeClass$1@3f3afe78

Equality By Structure Not By Reference

final case class Employee(firstName: String, lastName: String, ssn: String)

class EmployeeClass(firstName: String, lastName: String, ssn: String)

val employee1 = Employee("john", "wick", "111–11–1111")

val employee2 = Employee("john", "wick", "111–11–1111")

val employee3 = Employee("robert", "mccall", "222–222–2222")

println(employee1 == employee2)

// true

println(employee1 == employee3)

// false

val employeeClass1 = new EmployeeClass("john", "wick", "111–11–1111")

val employeeClass2 = new EmployeeClass("john", "wick", "111–11–1111")

println(employeeClass1 == employeeClass2

// false

Built-In copy Method

val employeeWithModifiedLastName = employee1.copy(firstName = "Jon")

println(employeeWithModifiedLastName)

// Employee(Jon,wick,111–11–1111)

println(employee1)

// FYI, employee1 is not changed

Note: cases classes may not be mutable by default, but they can be mutable eg:

You can extract the fields of a case class by using pattern matching eg:

The reason I discourage pattern match extractions for scala case classes is that

correct extractions depends on the correct order of the fields. Also, adding an extra

field to the case class will cause a compile error. Here is an example where the wrong

order creates a bug:

// Employee(john,wick,111–11–1111)

final case class MutableEmployee(var firstName: String, var lastName:

 String, var ssn: String)

val mutableEmployee = MutableEmployee("gravik", "skrull", "333–33–3333")

println(mutableEmployee)

// MutableEmployee(gravik,skrull,333–33–3333)

mutableEmployee.firstName = "talos"

println(mutableEmployee)

// MutableEmployee(talos,skrull,333–33–3333)

Using Pattern Matching For Field Extraction

employee1 match {

 case Employee(firstName, lastName, ssn) =>

 println(s"Name is $firstName $lastName and ssn is $ssn")

 // Name is john wick and ssn is 111–11–1111

}

// No need to define unused fields

employee1 match {

 case Employee(firstName, _, _) =>

 println(s"First name is $firstName")

 // First name is john

}

// wrong order!

employee1 match {

In this page we did the basic thing: introduced case classes and it's basic features: The toString
method, the equality by structure, the copy method and my least favorite field extraction by
pattern matching.

 case Employee(lastName, firstName, ssn) =>

	println(s"First name is $firstName, last name is $lastName and ssn is $ssn")

 // First name is wick, last name is john and ssn is 111–11–1111

}

final case class WideCaseClass(name: String, s1: String, s2: String, s3:

String,

 r1: String, r2: String, r3: String, t1: String, t2: String,

t3: String)

val wideClass: WideCaseClass = WideCaseClass("a", "b", "c", "d", "e", "f", "g", "h", "i", "j")

wideClass match

case WideCaseClass(_, _, _, _, _, r1, _, _, _, _) => println(r1)

// You've got it wrong by one position! Too bad!!!

// Type safety won't help you here.

Case Classes

It may not be intuitive why scope and validation are together at this moment. Let me explain why
these two topics should go together.

The most basic form of case class validation looks like the following. It works well but may not be
ideal.

We typically want the case class to just be a placeholder of data. Mixing up validation, calculations
and data in the same place will make case classes larger and bloated. For this purpose we want to

Separation Of Concerns:
Case Class Access Scope,
Validation, And Derived
Fields

Basic Case Class With Validation

final case class EmployeeValidated(firstName: String, lastName: String, ssn: String):

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 require(ssn.nonEmpty)

// Runs ok

val employee1: EmployeeValidated = EmployeeValidated("John", "Wick", "111-11-1111")

// Runtime exception thrown due to "require(lastName.nonEmpty)" validation above

val employee2: EmployeeValidated = EmployeeValidated("Michael", "", "222-22-2222")

Separating Validation And Case Classes

use companion objects eg

final case class Employee(firstName: String, lastName: String, ssn: String)

object Employee:

 val ssnToFullName: Map[String, (String, String)] = Map(

 "111-11-1111" -> ("John", "Wick"),

 "222-22-2222" -> ("Michael", "Bubble")

)

 val fullNameToSsn: Map[(String, String), String] = ssnToFullName.map {case (k,v) =>

(v,k)}

 def fromAllFields(firstName: String, lastName: String, ssn: String): Employee =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 require(ssn.nonEmpty)

 Employee(firstName, lastName, ssn)

 def fromSsn(ssn: String): Employee =

 require(ssn.nonEmpty)

 val (firstName: String, lastName: String) = ssnToFullName(ssn)

 Employee(firstName, lastName, ssn)

 def fromFullName(firstName: String, lastName: String): Employee =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 val ssn: String = fullNameToSsn((firstName, lastName))

 Employee(firstName, lastName, ssn)

// The following 3 println() should print the same data

val employee1FromBuilder = Employee.fromSsn("111-11-1111")

println(employee1FromBuilder)

val employee2FromBuilder = Employee.fromAllFields("John", "Wick", "111-11-1111")

println(employee2FromBuilder)

val employee3FromBuilder = Employee.fromFullName("John", "Wick")

println(employee3FromBuilder)

Restricting Access To Case Class Constructor

Now the problem with the code above is that anyone outside this file can directly build Employee
directly without validation. Ideally, we want to restrict this to guarantee data integrity. A way to
address this issue is to add a private qualifier to the case class right before the parenthesis eg

final case class EmployeePrivate private (firstName: String, lastName: String, ssn: String)

object EmployeePrivate:

 val ssnToFullName: Map[String, (String, String)] = Map(

 "111-11-1111" -> ("John", "Wick"),

 "222-22-2222" -> ("Michael", "Bubble")

)

 val fullNameToSsn: Map[(String, String), String] = ssnToFullName.map {case (k,v) =>

(v,k)}

 def fromAllFields(firstName: String, lastName: String, ssn: String): EmployeePrivate =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 require(ssn.nonEmpty)

 EmployeePrivate(firstName, lastName, ssn)

 def fromSsn(ssn: String): EmployeePrivate =

 require(ssn.nonEmpty)

 val (firstName: String, lastName: String) = ssnToFullName(ssn)

 EmployeePrivate(firstName, lastName, ssn)

 def fromFullName(firstName: String, lastName: String): Employee =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 val ssn: String = fullNameToSsn((firstName, lastName))

 Employee(firstName, lastName, ssn)

// The following 3 println() should print the same data

val employeePrivate1FromBuilder = EmployeePrivate.fromSsn("111-11-1111")

println(employee1FromBuilder)

val employeePrivate2FromBuilder = EmployeePrivate.fromAllFields("John", "Wick", "111-11-1111")

println(employee2FromBuilder)

val employeePrivate3FromBuilder = EmployeePrivate.fromFullName("John", "Wick")

println(employeePrivate3FromBuilder)

Now you won't be able to instantiate EmployeePrivate directly. You will only be able to do it
through the companion object or any other method in the same file.

Note: be aware that the case class convenience methods, namely copy, will not be available when
you add the private qualifier eg:

In that case, you will have to implement the copy command in a method inside the companion
object. Keep in mind the companion object has access to all the private methods of the case class
and vice-versa.

// Code from a separate file

import CaseClassAccessScopeAndValidation.EmployeePrivate

// The following will create a compile error

val employee = EmployeePrivate("John", "Wick", "111-11-1111")

// method apply cannot be accessed as a member of

CaseClassAccessScopeAndValidation.EmployeePrivate.

// type from module class CaseClassAccessScopeAndValidation_AccessAtempt$.

// But the following will work just fine

val employee2 = EmployeePrivate.fromAllFields("John", "Wick", "111-11-1111")

// Code from same separate file as code sample above

val employee2 = EmployeePrivate.fromAllFields("John", "Wick", "111-11-1111")

// Following code will generate a compile error

val employee3 = employee2.copy(firstName = "hernan")

// from module class CaseClassAccessScopeAndValidation_AccessAtempt$

// method copy cannot be accessed as a member of

// (CaseClassAccessScopeAndValidation_AccessAtempt.employee :

CaseClassAccessScopeAndValidation.EmployeePrivate)

Keep Derived Fields Outside The Case Class

We still want to stick to the idea of only keeping data in the case class and keep any logic outside
of it. Same thing applies to derived fields (fields that are a calculation of other fields in the case
class).

There are at least 2 ways we can do this. Method 1: Create a class that extends the case class
and a trait containing the derived field. And Method 2: Use scala extension.

Note: The author of this article prefers method 2 for looking cleaner and being more extensible.
Besides, we can still keep the case class final as well.

case class NonFinalEmployee(firstName: String, lastName: String, ssn: String)

// Method 1 for adding derived fields

// Use a trait and extend Employee case class with trait containing the derived field

trait FullNameDerived:

 self: NonFinalEmployee =>

 def fullNameDerived1 =

 s"$firstName $lastName"

class EmployeeData(firstName: String, lastName: String, ssn: String)

 extends NonFinalEmployee(firstName, lastName, ssn) with FullNameDerived

val employeeData: EmployeeData = new EmployeeData("John", "Wick", "111-11-1111")

println(employeeData.fullNameDerived1)

// Method 2 for adding derived fields

// Use extension method and extend Employee with derived field instead

extension (c: Employee)

 def fullNameDerived2: String=

 s"${c.firstName} ${c.lastName}"

val employee = Employee ("John", "Wick", "111-11-1111")

println(employee.fullNameDerived2)

In this chapter we will cover different aspects of data validation.

Data Validation

Data Validation

At least GOTOs go to known places in the code. Well.. it ain't that bad. Exceptions also carry data
describing the nature of the exception.

But just like GOTOs exceptions break the normal logical flow of your code.

Let's be honest: Is an invalid email considered an EXCEPTIONAL condition in your code? I doubt
it. In reality, an invalid email is just that, an invalid email and your application should be

able to handle it harmoniously. Treating mundane conditions like an invalid email should
never be an EXCEPTIONAL situation. Same goes for any other invalid data handled in your
application. Your code shouldn't be hard to understand or maintain because your fields require
validation or don't conform to the expectations of your application.

Conditions like running out of memory or not having enough CPUs to run your code successfully
are exceptional conditions. And in those cases, perhaps we should just exit the program or thread
instead, not just throwing an exception.

From Avoid Throwing Exceptions In Medium

Throwing an Exception breaks referential transparency.

This can be demonstrated fairly easily. If throw was referentially transparent, by definition, the

Avoid Throwing Exceptions
Why Throwing Exceptions Are Bad
Exceptions Are Like GOTOs To Somewhere....
Anywhere...Or Nowhere

Exceptions Should Be Used For Exceptional Reasons

You Lose Referential Transparency Thus Functional Purity

https://nrinaudo.github.io/scala-best-practices/referential_transparency/avoid_throwing_exceptions.html#:~:text=They're unsafe,total function when it's not.
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://nrinaudo.github.io/scala-best-practices/definitions/referential_transparency.html
https://nrinaudo.github.io/scala-best-practices/definitions/referential_transparency.html

two following methods would be equivalent:

But they aren't foo1() will return 2 and foo2() will throw an exception.

If we need to factor out code (imagine we want to factor out foo1() to improve testability) the code
will suddenly behave differently!

Lacking referential transparency makes refactoring/ testing and debugging more difficult. It also
makes it harder to use functional libraries such as ZIO which relies on your functions being
referentially transparent.

Since scala is a functional language. When we write functional code, we want our functions to be
as pure as possible, making our code more resilient and testable. Functions that throw exceptions
are not pure functions (because it may not return an output): Method getA() returns an Int, but in
reality it doesn't return anything during execution. Having functional purity provides clear benefits
(see https://alvinalexander.com/scala/fp-book/benefits-of-pure-functions/)

When throwing exceptions for data validation, It's common practice to validate arguments at the
beginning of a method. We like to keep things tidy eg

def foo1() = if(false) throw new Exception else 2

def getA(): Int = throw new Exception

def getAOr2(a: Int): Int = if (false) a else 2

def foo2() =

	val a = getA()

 getAOr2(a)

// foo3 and foo2 should be identical but aren't/

It Encourages Code Duplication For Data Validation

def validateEmail(string: String): Unit =

 if (string == null)

 throw new Error("Email is null")

 else

 val split = string.split("@")

https://docs.scala-lang.org/scala3/book/fp-pure-functions.html
https://alvinalexander.com/scala/fp-book/benefits-of-pure-functions/

Many of us do this separate validation so we can then have a clean "happy path" code afterwards.

This replication is not specific to the example above. Validation often requires decomposing data
to inspect for it's validity, the same goes for data parsing. Therefore, it often occurs that clean
code may mean duplicated code when throwing exceptions for data validation.

According to this article throwing a freshly created exception has been benchmarked to be more
than 100 times slower than just returning an exception object. Imagine a service running 150
times slower just because most of the requests have invalid fields. It will create a chain effect
where bad data lowers the performance of your application, apparently, for no good reason!

 if (split.size != 2)

 throw new Error(s"Email ${string} is malformed")

 else ()

case class Email(user: String, domain: String)

def produceEmail(email: String): Email =

 validateEmail(email)

 // But we already did the same split in validateEmail(email)!

 val splitEmail: Array[String] = email.split("@")

 val emailUser = splitEmail(0)

 val emailDomain = splitEmail(1)

 Email(emailUser, emailDomain)

Exceptions Are Slow

https://users.scala-lang.org/t/efficiency-creating-vs-throwing-an-exception/4226/4

Data Validation

In addition to throwing exceptions to handle errors, scala also offers the Either[E, A] data type to
perform the equivalent task of handling errors as well.

The email validation method we had:

Can now be redefined to return an Either[Error, Unit]. Additionally, I introduce an, IMO, more
readable way to check for null fields:

Using Either[E, A] And MapN
For Data Validation

Quick Intro To Either[E, A] type

def validateEmail(string: String): Unit =

 if (string == null)

 throw new Throwable("Email is null")

 else

 val split = string.split("@")

 if (split.size != 2)

 throw new Throwable(s"Email ${string} is malformed")

 else ()

def validateEmailEither(string: String): Either[Throwable, Unit] = string match

 case null =>

 Left(Error("Email is null"))

 case _ =>

 val split = string.split("@")

 if (split.size != 2)

 Left(Error(s"Email ${string} is malformed"))

 else Right(())

Perhaps, you can't see yet the benefit of using Either[A, E] yet with such small example.

Here we are using case classes to return validated fields instead of still using String types.

validateEmail("hernan#email.com")

// Exception in thread "main" java.lang.Error: Email hernan#email.com is malformed

// The following throws no exception

val validated: Either[Throwable, Unit] = validateEmailEither("hernan#email.com")

// We can then selectively handle the error when it occurs while staying in functional

programming paradigm

// The error handling uses the same runtime stack as "normal code" now

validated match

 case Left(f) => println(s"validation fail: ${f.getMessage}")

// validation fail: Email hernan#email.com is malformed

Building Validated Case Classes For Cleaner Code

final case class SSN private(area: Int, group: Int, serial: Int)

object SSN:

 def fromString(string: String): Either[Throwable, SSN] = string match

 case null =>

 Left(Throwable("Social security is null"))

 case _ =>

 val split = string.split("-")

 if (split.size != 3)

 Left(Throwable(s"Three different sets of digits expected but ${split.size}

found"))

 else if (split(0).filter(_.isDigit).isEmpty)

 Left(Throwable(s"No digits found in area position '${string}'"))

 else if (split(1).filter(_.isDigit).isEmpty)

 Left(Throwable(s"No digits found in group position '${string}'"))

 else if (split(2).filter(_.isDigit).isEmpty)

 Left(Throwable(s"No digits found in serial position '${string}'"))

 else if (split(0).filter(!_.isDigit).nonEmpty)

 Left(Throwable(s"Invalid digit found in area position '${string}'"))

 else if (split(1).filter(!_.isDigit).nonEmpty)

 Left(Throwable(s"Invalid digit found in group position '${string}'"))

Now we can validate our fields while expressing the "happy path" clearly eg

 else if (split(2).filter(!_.isDigit).nonEmpty)

 Left(Throwable(s"Invalid digit found in serial position '${string}'"))

 else

 Right(SSN(area = split(0).toInt, group = split(1).toInt, serial = split(2).toInt))

final case class Email private(user: String, domain: String)

object Email:

 def fromString(string: String): Either[Throwable, Email] = string match

 case null =>

 Left(Throwable("Email is null"))

 case _ =>

 val split = string.split("@")

 if (split.size != 2)

 Left(Throwable(s"Email '${string}' is malformed"))

 else

 Right(Email(user = split(0), domain = split(1)))

Putting It Together With For Comprehensions

final case class Employee(ssn: SSN, email: Email)

val employee: Either[Throwable, Employee] = for

 email <- Email.fromString("hernan@email.com")

 ssn <- SSN.fromString("111-11-1111")

yield Employee(ssn = ssn, email = email)

val employeeBadEmail: Either[Throwable, Employee] = for

 email <- Email.fromString("hernan#email.com")

 ssn <- SSN.fromString("111-11-1111")

yield Employee(ssn = ssn, email = email)

val employeeBadSsn: Either[Throwable, Employee] = for

 email <- Email.fromString("hernan@email.com")

 ssn <- SSN.fromString("11111-1111")

yield Employee(ssn = ssn, email = email)

// Again, we handle errors using normal control data flow

employee match {

I love for comprehensions because enables me to clearly express the happy path while handling
potential errors. But not everything is perfect here. The sequential nature of for

comprehensions doesn't allow us to catch all errors if that is what we need. eg, how do we
know if both fields ssn and email are incorrect?

 case Right(o) => println(s"employee: Validated employee: $o")

 case Left(e) => println(s"employee: Validation error: $e")

}

// employee: Validated employee: Employee(SSN(111,11,1111),Email(hernan,email.com))

employeeBadEmail match {

 case Right(o) => println(s"employeeBadEmail: Validated employee: $o")

 case Left(e) => println(s"employeeBadEmail: Validation error: $e")

}

// employeeBadEmail: Validation error: java.lang.Throwable: Email 'hernan#email.com' is

malformed

employeeBadSsn match {

 case Right(o) => println(s"employeeBadSsn: Validated employee: $o")

 case Left(e) => println(s"employeeBadSsn: Validation error: $e")

}

// employeeBadSsn: Validation error: java.lang.Throwable: Three different sets of digits

expected but 2 found

But There Is A Problem With For Comprehensions: It's
Sequential Nature

val employeeBadEmailAndBadSsn: Either[Throwable, Employee] = for

 email <- Email.fromString("hernan#email.com")

 ssn <- SSN.fromString("11111-1111")

yield Employee(ssn = ssn, email = email)

// Two fields are invalid but only one will be evaluated. Therefore, you will only be able to

collect one error

employeeBadEmailAndBadSsn match {

 case Right(o) => println(s"employeeBadEmailAndBadSsn: Validated employee: $o")

 case Left(e) => println(s"employeeBadEmailAndBadSsn: Validation error: $e")

}

The printed errors above only shows the first invalid field, the email. However, the format of the
ssn is also incorrect. But due to the sequential nature of for comprehensions, all computations
after the first error are cancelled and email doesn't get a change to get evaluated.

For comprehensions are useful for the common use case when you need to fail fast with no need
to evaluate other bad fields.

For comprehensions will cancel the next steps when the first error is generated. This means it's
not equipped to evaluate multiple fields.

If we want to collect many validation errors, we first need a data type able to handle them. Enter
Either[List[Throwable], A]

In the example above I provided a simplified version of Either[List[Throwable], A] to reduce
verbosity, alias type EitherError[A].

Here is how our case classes and builders would look after modifying Either[E, A]

// employeeBadEmailAndBadSsn: Validation error: java.lang.Throwable: Email 'hernan#email.com'

is malformed

Using Either[List[Throwable], A] instead of
Either[Throwable, A]

// Convenience type alias

type EitherError[A] = Either[List[Throwable], A]

// Usage

val goodText1: Either[List[Throwable], String] = Right("good text")

val badText1: Either[List[Throwable], String] = Left(List(Throwable("bad text found")))

// Or

val goodText2: EitherError[String] = Right("good text")

val badText2: EitherError[String] = Left(List(Throwable("bad text found")))

final case class SSN2 private(area: Int, group: Int, serial: Int)

object SSN2:

 def fromString(string: String): Either[List[Throwable], SSN2] = string match

 case null =>

Since I don't like the ugly nested Left(List(Throwable, I created a convenience method wrapper
called LeftThrowable that you can find in this repo. This is how the code above will look like:

 Left(List(Throwable("Social security is null")))

 case _ =>

 val split = string.split("-")

 if (split.size != 3)

 Left(List(Throwable(s"Three different sets of digits expected but ${split.size}

found")))

 else if (split(0).filter(_.isDigit).isEmpty)

 Left(List(Throwable(s"No digits found in area position '${string}'")))

 else if (split(1).filter(_.isDigit).isEmpty)

 Left(List(Throwable(s"No digits found in group position '${string}'")))

 else if (split(2).filter(_.isDigit).isEmpty)

 Left(List(Throwable(s"No digits found in serial position '${string}'")))

 else if (split(0).filter(!_.isDigit).nonEmpty)

 Left(List(Throwable(s"Invalid digit found in area position '${string}'")))

 else if (split(1).filter(!_.isDigit).nonEmpty)

 Left(List(Throwable(s"Invalid digit found in group position '${string}'")))

 else if (split(2).filter(!_.isDigit).nonEmpty)

 Left(List(Throwable(s"Invalid digit found in serial position '${string}'")))

 else

 Right(SSN2(area = split(0).toInt, group = split(1).toInt, serial = split(2).toInt))

final case class Email2 private(user: String, domain: String)

object Email2:

 def fromString(string: String): Either[List[Throwable], Email2] = string match

 case null =>

 Left(List(Throwable("Email is null")))

 case _ =>

 val split = string.split("@")

 if (split.size != 2)

 Left(List(Throwable(s"Email '${string}' is malformed")))

 else

 Right(Email2(user = split(0), domain = split(1)))

final case class SSN3 private(area: Int, group: Int, serial: Int)

object SSN3:

 def fromString(string: String): Either[List[Throwable], SSN3] = string match

https://github.com/scala-blog/scala3-validation-blogs/blob/main/mapn-lib/src/main/scala/convenience/Lib.scala
https://github.com/scala-blog/scala3-validation-blogs/blob/main/mapn-lib/src/main/scala/convenience/Lib.scala

Applicatives are helpful when all fields need to be evaluated. Unfortunately, these capability is not
included in the scala standard library. Libraries like cats provide it. I am using a homegrown
version of applicatives you can use in this link in case you don't want to deal with the somehow

 case null =>

 LeftThrowable("Social security is null")

 case _ =>

 val split = string.split("-")

 if (split.size != 3)

 LeftThrowable(s"Three different sets of digits expected but ${split.size}

found")

 else if (split(0).filter(_.isDigit).isEmpty)

 LeftThrowable(s"No digits found in area position '${string}'")

 else if (split(1).filter(_.isDigit).isEmpty)

 LeftThrowable(s"No digits found in group position '${string}'")

 else if (split(2).filter(_.isDigit).isEmpty)

 LeftThrowable(s"No digits found in serial position '${string}'")

 else if (split(0).filter(!_.isDigit).nonEmpty)

 LeftThrowable(s"Invalid digit found in area position '${string}'")

 else if (split(1).filter(!_.isDigit).nonEmpty)

 LeftThrowable(s"Invalid digit found in group position '${string}'")

 else if (split(2).filter(!_.isDigit).nonEmpty)

 LeftThrowable(s"Invalid digit found in serial position '${string}'")

 else

 Right(SSN3(area = split(0).toInt, group = split(1).toInt, serial = split(2).toInt))

final case class Email3 private(user: String, domain: String)

object Email3:

 def fromString(string: String): Either[List[Throwable], Email3] = string match

 case null =>

 LeftThrowable("Email is null")

 case _ =>

 val split = string.split("@")

 if (split.size != 2)

 LeftThrowable(s"Email '${string}' is malformed")

 else

 Right(Email3(user = split(0), domain = split(1)))

Introducing mapN (AKA Applicatives)

https://typelevel.org/cats/typeclasses/applicative.html
https://github.com/scala-blog/scala3-validation-blogs/blob/main/mapn-lib/src/main/scala/convenience/Applicative.scala
https://github.com/scala-blog/scala3-validation-blogs/blob/main/mapn-lib/src/main/scala/convenience/Applicative.scala

heavy cats library.

Here is how it would look when putting together these validated fields into a case class. Similar to
the example above:

So far, we've learned two useful techniques for evaluating and validating fields, for
comprehensions for the simple stop-on-first-fail and mapN when catching multiple errors is
beneficial.

final case class Employee3 private(ssn: SSN3, email: Email3)

val employeeGood: EitherError[Employee3] = Applicative.mapN(

 Email3.fromString("hernan@gmail.com"),

 SSN3.fromString("111-11-1111")

)((email, ssn) => Employee3(email = email, ssn = ssn))

println(employeeGood)

// Right(Employee(SSN2(111,11,1111),Email2(hernan,gmail.com)))

val employeeBadEmail: EitherError[Employee3] = Applicative.mapN(

 Email3.fromString("hernan#gmail.com"),

 SSN3.fromString("111-11-1111")

)((email, ssn) => Employee3(email = email, ssn = ssn))

println(employeeBadEmail)

// Left(List(java.lang.Throwable: Email 'hernan#gmail.com' is malformed))

val employeeBadEmailAndSsn: EitherError[Employee3] = Applicative.mapN(

 Email3.fromString("hernan#gmail.com"),

 SSN3.fromString("111111111")

)((email, ssn) => Employee3(email = email, ssn = ssn))

println(employeeBadEmailAndSsn)

// Left(List(java.lang.Throwable: Email 'hernan#gmail.com' is malformed, java.lang.Throwable:

Three different sets of digits expected but 1 found))

Data Validation

The reason I put together this article is because I couldn't help to notice how similar Either[E, A] is
to union type E | A.

And then I asked myself, could we use union types instead of Either[E, A] with a goal of getting a
leaner and faster equivalent functionality?

Enough of clickbait, the answer is yes, but not by a lot, we are talking about 4% improvement

in runtime and memory usage. Now you can chose to continue reading this blog with the right
expectations.

Let's revisit how we would do validation using Either[E, A] and for comprehension. Here is a piece
of code from this blog's repo

I would like to clarify that in the example above we are generating Either[E, A] objects that are
only used for validation and eventually thrown away once their value is extracted.

Use Union Types Instead Of
Either[E, A] For A More
Efficient Validation?

 val employeeGood = for

 email <- UsingEither.EmailBuilder.fromString("x@dd.com")

 ssn <- UsingEither.SsnBuilder.fromString("111-11-1111")

 yield Employee(email=email, ssn=ssn)

 println(s"employeeGood $employeeGood")

 val employeeGood = for

 // The Either[E, A] object from UsingUnionType.EmailBuilder.fromString

 // is thrown away immediately

 email <- UsingEither.EmailBuilder.fromString("x@dd.com")

https://github.com/scala-blog/scala3-validation-blogs/blob/main/validation/src/main/scala/datavalidation/UnionTypeVsEither.scala

If we do this enough time in our code, we maybe be giving our garbage collector a lot of work just
to cleanup these intermediate Either[E, A] wrappers!

Thus, here is the question I will try to answer in this blog:

I am thinking that the best candidate for this solution would be the union types introduced in

scala 3:

 // The Either[E, A] object from UsingUnionType.SsnBuilder.fromString

 // is also thrown away immediately

 ssn <- UsingEither.SsnBuilder.fromString("111-11-1111")

 yield Employee(email=email, ssn=ssn)

 println(s"employeeGood $employeeGood")

Can we use for comprehensions for validating data without
using a wrapper object like Either[E, A]?

object UsingUnionType:	

	type unionWithErrorList[A] = List[Throwable] | A

 object SsnBuilder:

 def fromString(string: String): unionWithErrorList[SSN] = {

 string match

 case null =>

 List(Throwable("Social security is null"))

 case _ =>

 val split = string.split("-")

 if (split.size != 3)

 List(Throwable(s"Three different sets of digits expected but ${split.size}

found"))

 else if (split(0).filter(_.isDigit).isEmpty)

 List(Throwable(s"No digits found in area position '${string}'"))

 else if (split(1).filter(_.isDigit).isEmpty)

 List(Throwable(s"No digits found in group position '${string}'"))

 else if (split(2).filter(_.isDigit).isEmpty)

 List(Throwable(s"No digits found in serial position '${string}'"))

 else if (split(0).filter(!_.isDigit).nonEmpty)

 List(Throwable(s"Invalid digit found in area position

'${string}'"))

 else if (split(1).filter(!_.isDigit).nonEmpty)

https://docs.scala-lang.org/scala3/book/types-union.html

But will the following work?

Nope! You will get compile errors! There Union types don't have their own flatmap!

value flatMap is not a member of

datavalidation.UnionTypeVsEither.UsingUnionType.unionWithErrorList[

datavalidation.UnionTypeVsEither.Email

], but could be made available as an extension method.

Well, then let's add a flatmap and a map to the union type to make for comprehensions work!

List(Throwable(s"Invalid digit found in group position '${string}'"))

 else if (split(2).filter(!_.isDigit).nonEmpty)

 List(Throwable(s"Invalid digit found in serial position

'${string}'"))

 else

 SSN(area = split(0).toInt, group = split(1).toInt, serial =

split(2).toInt)

 }

 object EmailBuilder:

 def fromString(string: String): unionWithErrorList[Email] = string match

 case null =>

 List(Throwable("Email is null"))

 case _ =>

 val split = string.split("@")

 if (split.size != 2)

 List(Throwable(s"Email '${string}' is malformed"))

 else

 Email(user = split(0), domain = split(1))

 val employeeGood = for

 email <- UsingUnionType.EmailBuilder.fromString("x@dd.com")

 ssn <- UsingUnionType.SsnBuilder.fromString("111-11-1111")

 yield Employee(email=email, ssn=ssn)

 println(s"employeeGood $employeeGood")

extension[B] (or: UsingUnionType.unionWithErrorList[B])

 def flatMap[B1](f: B => List[Throwable] | B1): UsingUnionType.unionWithErrorList[B1] = or

It works!

But does it consume less memory? Yes, a little bit

I setup 2 benchmarks and setup the following jvm settings to collect memory usage. Make sure
you are using java 11 or newer and java 8 will not recognize
"-XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC"

-XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC -Xmx32g

The idea is that we accumulate memory usage and we track memory usage through each
incremental step. Be aware this benchmark eats up a lot of memory since we are turning off

the garbage collector.

More details about this benchmark code can be seen at the repo file for this blog. Feel free to
download them and run them.

match

 	case e: List[Throwable] => e

 	case o: B => f(o)

 def map[B1](f: B => B1): UsingUnionType.unionWithErrorList[B1] = or match

 	case e: List[Throwable] => or.asInstanceOf[UsingUnionType.unionWithErrorList[B1]]

 case o: B => f(o).asInstanceOf[UsingUnionType.unionWithErrorList[B1]]

 val employeeGood = for

 email <- UsingUnionType.EmailBuilder.fromString("x@dd.com")

 ssn <- UsingUnionType.SsnBuilder.fromString("111-11-1111")

 yield Employee(email=email, ssn=ssn)

 println(s"employeeGood $employeeGood")

// prints employeeGood Employee(Email(x,dd.com),SSN(111,11,1111))

object BenchmarkEither extends App:

 UnionTypeVsEither.employeeGenerateValidateWithEither(4_000_000)

 val t1 = System.currentTimeMillis()

 val m1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()

 val list = UnionTypeVsEither.employeeGenerateValidateWithEither(4_000_000)

https://github.com/scala-blog/scala3-validation-blogs/blob/main/validation/src/main/scala/datavalidation/UnionTypeVsEither.scala

Both benchmarks, the one for union types and the one for Either[E, A] yielded the following results
rather consistently:

union types

 employeeGenerateValidateWithUnionTypes:mem:gb: 4.148166656

 employeeGenerateValidateWithUnionTypes:ms: 2545

 val t2 = System.currentTimeMillis()

 val m2 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()

 println(s"employeeGenerateValidateWithEither:mem:gb: ${(m2 - m1) / 1_000_000_000.0}")

 println(s"employeeGenerateValidateWithEither:ms: ${(t2 - t1)}")

object BenchmarkUnionType extends App:

 UnionTypeVsEither.employeeGenerateValidateWithUnionTypes(4_000_000)

 val t1 = System.currentTimeMillis()

 val m1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()

 val list = UnionTypeVsEither.employeeGenerateValidateWithUnionTypes(4_000_000)

 val t2 = System.currentTimeMillis()

 val m2 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()

 println(s"employeeGenerateValidateWithUnionTypes:mem:gb: ${(m2-m1)/1_000_000_000.0}")

 println(s"employeeGenerateValidateWithUnionTypes:ms: ${(t2 - t1)}")

object NoWrappers extends App:

 UnionTypeVsEither.employeeGenerateNoValidationWrappers(4_000_000)

 val t1 = System.currentTimeMillis()

 val m1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()

 val list = UnionTypeVsEither.employeeGenerateNoValidationWrappers(4_000_000)

 val t2 = System.currentTimeMillis()

 val m2 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()

 println(f"employeeGenerateNoValidationWrappers:mem:gb: ${(m2 - m1) /

1_000_000_000.0}%.2f")

 println(s"employeeGenerateNoValidationWrappers:ms: ${(t2 - t1)}")

either

 employeeGenerateValidateWithEither:mem:gb: 4.273995776

 employeeGenerateValidateWithEither:ms: 2639

One can speculate the difference should deepen the longer the for-comprehension gets (meaning
more Either types being garbage collected).

Will memory efficiency help if we use opaque union types? Haven't seen any

improvements

Let's try something else, opaque types for union types. Scala 3 introduced opaque types. The
claim of opaque types is that they "provide type abstraction without any overhead. In Scala 2, a
similar result could be achieved with value classes." (from docs.scala-lang.org)

Does that mean that we could use opaque types for union types? Let's try it!

 object UsingOpaqueUnionType:

 opaque type OpaqueUnionWithErrorList[A] = List[Throwable] | A

 object SsnBuilder:

 def fromString(string: String): OpaqueUnionWithErrorList[SSN] = {

 string match

 case null =>

 List(Throwable("Social security is null"))

 case _ =>

 val split = string.split("-")

 if (split.size != 3)

 List(Throwable(s"Three different sets of digits expected but ${split.size}

found"))

.....

 else if (split(2).filter(!_.isDigit).nonEmpty)

 List(Throwable(s"Invalid digit found in serial position

'${string}'"))

 else

 SSN(area = split(0).toInt, group = split(1).toInt, serial =

split(2).toInt)

 }

 object EmailBuilder:

https://docs.scala-lang.org/overviews/core/value-classes.html
https://docs.scala-lang.org/scala3/book/types-opaque-types.html

Be warned your IDE may not like parsing the code above, you will likely see strange errors
reporting as we are not writing standard scala.

After benchmarking opaque union types vs Either vs just union types we get the following results
more or less cconsistently:

union types

 employeeGenerateValidateWithUnionTypes:mem:gb: 4.148166656

 employeeGenerateValidateWithUnionTypes:ms: 2545

either

 employeeGenerateValidateWithEither:mem:gb: 4.273995776

 employeeGenerateValidateWithEither:ms: 2639

opaque union type

 employeeGenerateValidateWithOpaqueUnionTypes:mem:gb: 4.15

 employeeGenerateValidateWithOpaqueUnionTypes:ms: 2493

 def fromString(string: String): OpaqueUnionWithErrorList[Email] = string match

 case null =>

 List(Throwable("Email is null"))

 case _ =>

 val split = string.split("@")

 if (split.size != 2)

 List(Throwable(s"Email '${string}' is malformed"))

 else

 Email(user = split(0), domain = split(1))

 extension[B] (or: OpaqueUnionWithErrorList[B])

 def flatMap[B1](f: B => List[Throwable] | B1): OpaqueUnionWithErrorList[B1] = or

match

 case e: List[Throwable] => e.asInstanceOf[OpaqueUnionWithErrorList[B1]]

 case o: B => f(o).asInstanceOf[OpaqueUnionWithErrorList[B1]]

 def map[B1](f: B => B1): OpaqueUnionWithErrorList[B1] =

 or match

 case e: List[Throwable] => or.asInstanceOf[OpaqueUnionWithErrorList[B1]]

 case o: B => f(o).asInstanceOf[OpaqueUnionWithErrorList[B1]]

I observed an improvement of about 4% on performance and memory savings by using
union types or opaque types instead of Either[E, A]
If we do the math on object creation (Either objects that get trashed right away) the math
doesn't add up. There are clearly scala specific memory optimizations (outside the garbage
collector) that make the use of Either[E, A] very efficient.

The answer would be: not today.

Clearly, this is not a commonly accepted way of evaluating data today
There maybe unexpected side effects when writing code like this
Intellij IDE doesn't like it. You will see lots of red in the code
I can't think of many places where it's worth the risk using Union types for a 4%
improvement in performance and memory efficiency.

Access to repo for this blog

The conclusion so far:

Is it justifiable to use union types instead of Either?

https://github.com/scala-blog/scala3-validation-blogs/blob/main/validation/src/main/scala/datavalidation/UnionTypeVsEither.scala

