
At least GOTOs go to known places in the code. Well.. it ain't that bad. Exceptions also carry data
describing the nature of the exception.

But just like GOTOs exceptions break the normal logical flow of your code.

Let's be honest: Is an invalid email considered an EXCEPTIONAL condition in your code? I doubt
it. In reality, an invalid email is just that, an invalid email and your application should be
able to handle it harmoniously. Treating mundane conditions like an invalid email should
never be an EXCEPTIONAL situation. Same goes for any other invalid data handled in your
application. Your code shouldn't be hard to understand or maintain because your fields require
validation or don't conform to the expectations of your application.

Conditions like running out of memory or not having enough CPUs to run your code successfully
are exceptional conditions. And in those cases, perhaps we should just exit the program or thread
instead, not just throwing an exception.

From Avoid Throwing Exceptions In Medium

Throwing an Exception breaks referential transparency.

This can be demonstrated fairly easily. If throw was referentially transparent, by definition, the
two following methods would be equivalent:

Avoid Throwing Exceptions
Why Throwing Exceptions Are Bad
Exceptions Are Like GOTOs To Somewhere....
Anywhere...Or Nowhere

Exceptions Should Be Used For Exceptional Reasons

You Lose Referential Transparency Thus Functional Purity

def foo1() = if(false) throw new Exception else 2

def getA(): Int = throw new Exception

def getAOr2(a: Int): Int = if (false) a else 2

https://nrinaudo.github.io/scala-best-practices/referential_transparency/avoid_throwing_exceptions.html#:~:text=They're unsafe,total function when it's not.
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://nrinaudo.github.io/scala-best-practices/definitions/referential_transparency.html
https://nrinaudo.github.io/scala-best-practices/definitions/referential_transparency.html

But they aren't foo1() will return 2 and foo2() will throw an exception.

If we need to factor out code (imagine we want to factor out foo1() to improve testability) the code
will suddenly behave differently!

Lacking referential transparency makes refactoring/ testing and debugging more difficult. It also
makes it harder to use functional libraries such as ZIO which relies on your functions being
referentially transparent.

Since scala is a functional language. When we write functional code, we want our functions to be
as pure as possible, making our code more resilient and testable. Functions that throw exceptions
are not pure functions (because it may not return an output): Method getA() returns an Int, but in
reality it doesn't return anything during execution. Having functional purity provides clear benefits
(see https://alvinalexander.com/scala/fp-book/benefits-of-pure-functions/)

When throwing exceptions for data validation, It's common practice to validate arguments at the
beginning of a method. We like to keep things tidy eg

def foo2() =

	val a = getA()

 getAOr2(a)

// foo3 and foo2 should be identical but aren't/

It Encourages Code Duplication For Data Validation

def validateEmail(string: String): Unit =

 if (string == null)

 throw new Error("Email is null")

 else

 val split = string.split("@")

 if (split.size != 2)

 throw new Error(s"Email ${string} is malformed")

 else ()

case class Email(user: String, domain: String)

def produceEmail(email: String): Email =

 validateEmail(email)

 // But we already did the same split in validateEmail(email)!

 val splitEmail: Array[String] = email.split("@")

https://docs.scala-lang.org/scala3/book/fp-pure-functions.html
https://alvinalexander.com/scala/fp-book/benefits-of-pure-functions/

Many of us do this separate validation so we can then have a clean "happy path" code afterwards.

This replication is not specific to the example above. Validation often requires decomposing data
to inspect for it's validity, the same goes for data parsing. Therefore, it often occurs that clean
code may mean duplicated code when throwing exceptions for data validation.

According to this article throwing a freshly created exception has been benchmarked to be more
than 100 times slower than just returning an exception object. Imagine a service running 150
times slower just because most of the requests have invalid fields. It will create a chain effect
where bad data lowers the performance of your application, apparently, for no good reason!

 val emailUser = splitEmail(0)

 val emailDomain = splitEmail(1)

 Email(emailUser, emailDomain)

Exceptions Are Slow

Revision #11
Created Wed, Aug 9, 2023 7:22 PM by hernan saab
Updated Sun, Aug 13, 2023 1:06 AM by hernan saab

https://users.scala-lang.org/t/efficiency-creating-vs-throwing-an-exception/4226/4
https://blog.code-with-no-regrets.com/user/1
https://blog.code-with-no-regrets.com/user/1

