
The case class in scala is the most relevant feature in scala for handling data effectively.

The final qualifier makes sense because extending a case class may lead to inconsistencies and
performance issues as well (
https://gist.github.com/chaotic3quilibrium/58e78a2e21ce43bfe0042bbfbb93e7dc)

A case class provides a swiss knife of features to make your life easier when handling data.

Here is the list of the most popular features provided by the case class:

A convenient toString() method that will display all it’s field contents
A compare by-field-values, not be reference
A copy method for handling immutable data
Pattern matching for field extraction (perhaps better avoided)

With case classes, the toString method is invoked when you need to evaluate any object to a
string eg

Quick Intro To Case Classes

final case class Employee(firstName: String, lastName: String, ssn: String)

Covering The Key Features

Convenience toString Method

final case class Employee(firstName: String, lastName: String, ssn: String)

class EmployeeClass(firstName: String, lastName: String, ssn: String)

val employee = Employee("john", "wick", "111–11–1111")

val employeeClass = new EmployeeClass("john", "wick", "111–11–1111")

println(employee)

// Cool

// Employee(john,wick,111–11–1111)

println(employeeClass)

// Not cool. Prints a representation of the reference for this object

https://gist.github.com/chaotic3quilibrium/58e78a2e21ce43bfe0042bbfbb93e7dc

With case classes, you can compare objects by their structure not by reference (default when
using plain classes). Here is an illustration on how it works vs plan classes:

Case classes are immutable by default. This means that modifying fields is not possible. However,
you can copy-modify case classes. eg:

Note: cases classes may not be mutable by default, but they can be mutable eg:

// Main$EmployeeClass$1@3f3afe78

Equality By Structure Not By Reference

final case class Employee(firstName: String, lastName: String, ssn: String)

class EmployeeClass(firstName: String, lastName: String, ssn: String)

val employee1 = Employee("john", "wick", "111–11–1111")

val employee2 = Employee("john", "wick", "111–11–1111")

val employee3 = Employee("robert", "mccall", "222–222–2222")

println(employee1 == employee2)

// true

println(employee1 == employee3)

// false

val employeeClass1 = new EmployeeClass("john", "wick", "111–11–1111")

val employeeClass2 = new EmployeeClass("john", "wick", "111–11–1111")

println(employeeClass1 == employeeClass2

// false

Built-In copy Method

val employeeWithModifiedLastName = employee1.copy(firstName = "Jon")

println(employeeWithModifiedLastName)

// Employee(Jon,wick,111–11–1111)

println(employee1)

// FYI, employee1 is not changed

// Employee(john,wick,111–11–1111)

final case class MutableEmployee(var firstName: String, var lastName:

 String, var ssn: String)

You can extract the fields of a case class by using pattern matching eg:

The reason I discourage pattern match extractions for scala case classes is that
correct extractions depends on the correct order of the fields. Also, adding an extra
field to the case class will cause a compile error. Here is an example where the wrong
order creates a bug:

val mutableEmployee = MutableEmployee("gravik", "skrull", "333–33–3333")

println(mutableEmployee)

// MutableEmployee(gravik,skrull,333–33–3333)

mutableEmployee.firstName = "talos"

println(mutableEmployee)

// MutableEmployee(talos,skrull,333–33–3333)

Using Pattern Matching For Field Extraction

employee1 match {

 case Employee(firstName, lastName, ssn) =>

 println(s"Name is $firstName $lastName and ssn is $ssn")

 // Name is john wick and ssn is 111–11–1111

}

// No need to define unused fields

employee1 match {

 case Employee(firstName, _, _) =>

 println(s"First name is $firstName")

 // First name is john

}

// wrong order!

employee1 match {

 case Employee(lastName, firstName, ssn) =>

	println(s"First name is $firstName, last name is $lastName and ssn is $ssn")

 // First name is wick, last name is john and ssn is 111–11–1111

}

final case class WideCaseClass(name: String, s1: String, s2: String, s3:

String,

 r1: String, r2: String, r3: String, t1: String, t2: String,

In this page we did the basic thing: introduced case classes and it's basic features: The toString
method, the equality by structure, the copy method and my least favorite field extraction by
pattern matching.

t3: String)

val wideClass: WideCaseClass = WideCaseClass("a", "b", "c", "d", "e", "f", "g", "h", "i", "j")

wideClass match

case WideCaseClass(_, _, _, _, _, r1, _, _, _, _) => println(r1)

// You've got it wrong by one position! Too bad!!!

// Type safety won't help you here.

Revision #7
Created Sun, Aug 6, 2023 12:21 AM by hernan saab
Updated Wed, Aug 9, 2023 7:20 PM by hernan saab

https://blog.code-with-no-regrets.com/user/1
https://blog.code-with-no-regrets.com/user/1

