
It may not be intuitive why scope and validation are together at this moment. Let me explain why
these two topics should go together.

The most basic form of case class validation looks like the following. It works well but may not be
ideal.

We typically want the case class to just be a placeholder of data. Mixing up validation, calculations
and data in the same place will make case classes larger and bloated. For this purpose we want to
use companion objects eg

Separation Of Concerns:
Case Class Access Scope,
Validation, And Derived
Fields

Basic Case Class With Validation

final case class EmployeeValidated(firstName: String, lastName: String, ssn: String):

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 require(ssn.nonEmpty)

// Runs ok

val employee1: EmployeeValidated = EmployeeValidated("John", "Wick", "111-11-1111")

// Runtime exception thrown due to "require(lastName.nonEmpty)" validation above

val employee2: EmployeeValidated = EmployeeValidated("Michael", "", "222-22-2222")

Separating Validation And Case Classes

final case class Employee(firstName: String, lastName: String, ssn: String)

Now the problem with the code above is that anyone outside this file can directly build Employee
directly without validation. Ideally, we want to restrict this to guarantee data integrity. A way to
address this issue is to add a private qualifier to the case class right before the parenthesis eg

object Employee:

 val ssnToFullName: Map[String, (String, String)] = Map(

 "111-11-1111" -> ("John", "Wick"),

 "222-22-2222" -> ("Michael", "Bubble")

)

 val fullNameToSsn: Map[(String, String), String] = ssnToFullName.map {case (k,v) =>

(v,k)}

 def fromAllFields(firstName: String, lastName: String, ssn: String): Employee =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 require(ssn.nonEmpty)

 Employee(firstName, lastName, ssn)

 def fromSsn(ssn: String): Employee =

 require(ssn.nonEmpty)

 val (firstName: String, lastName: String) = ssnToFullName(ssn)

 Employee(firstName, lastName, ssn)

 def fromFullName(firstName: String, lastName: String): Employee =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 val ssn: String = fullNameToSsn((firstName, lastName))

 Employee(firstName, lastName, ssn)

// The following 3 println() should print the same data

val employee1FromBuilder = Employee.fromSsn("111-11-1111")

println(employee1FromBuilder)

val employee2FromBuilder = Employee.fromAllFields("John", "Wick", "111-11-1111")

println(employee2FromBuilder)

val employee3FromBuilder = Employee.fromFullName("John", "Wick")

println(employee3FromBuilder)

Restricting Access To Case Class Constructor

final case class EmployeePrivate private (firstName: String, lastName: String, ssn: String)

Now you won't be able to instantiate EmployeePrivate directly. You will only be able to do it
through the companion object or any other method in the same file.

object EmployeePrivate:

 val ssnToFullName: Map[String, (String, String)] = Map(

 "111-11-1111" -> ("John", "Wick"),

 "222-22-2222" -> ("Michael", "Bubble")

)

 val fullNameToSsn: Map[(String, String), String] = ssnToFullName.map {case (k,v) =>

(v,k)}

 def fromAllFields(firstName: String, lastName: String, ssn: String): EmployeePrivate =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 require(ssn.nonEmpty)

 EmployeePrivate(firstName, lastName, ssn)

 def fromSsn(ssn: String): EmployeePrivate =

 require(ssn.nonEmpty)

 val (firstName: String, lastName: String) = ssnToFullName(ssn)

 EmployeePrivate(firstName, lastName, ssn)

 def fromFullName(firstName: String, lastName: String): Employee =

 require(firstName.nonEmpty)

 require(lastName.nonEmpty)

 val ssn: String = fullNameToSsn((firstName, lastName))

 Employee(firstName, lastName, ssn)

// The following 3 println() should print the same data

val employeePrivate1FromBuilder = EmployeePrivate.fromSsn("111-11-1111")

println(employee1FromBuilder)

val employeePrivate2FromBuilder = EmployeePrivate.fromAllFields("John", "Wick", "111-11-1111")

println(employee2FromBuilder)

val employeePrivate3FromBuilder = EmployeePrivate.fromFullName("John", "Wick")

println(employeePrivate3FromBuilder)

// Code from a separate file

import CaseClassAccessScopeAndValidation.EmployeePrivate

Note: be aware that the case class convenience methods, namely copy, will not be available when
you add the private qualifier eg:

In that case, you will have to implement the copy command in a method inside the companion
object. Keep in mind the companion object has access to all the private methods of the case class
and vice-versa.

We still want to stick to the idea of only keeping data in the case class and keep any logic outside
of it. Same thing applies to derived fields (fields that are a calculation of other fields in the case
class).

There are at least 2 ways we can do this. Method 1: Create a class that extends the case class
and a trait containing the derived field. And Method 2: Use scala extension.

// The following will create a compile error

val employee = EmployeePrivate("John", "Wick", "111-11-1111")

// method apply cannot be accessed as a member of

CaseClassAccessScopeAndValidation.EmployeePrivate.

// type from module class CaseClassAccessScopeAndValidation_AccessAtempt$.

// But the following will work just fine

val employee2 = EmployeePrivate.fromAllFields("John", "Wick", "111-11-1111")

// Code from same separate file as code sample above

val employee2 = EmployeePrivate.fromAllFields("John", "Wick", "111-11-1111")

// Following code will generate a compile error

val employee3 = employee2.copy(firstName = "hernan")

// from module class CaseClassAccessScopeAndValidation_AccessAtempt$

// method copy cannot be accessed as a member of

// (CaseClassAccessScopeAndValidation_AccessAtempt.employee :

CaseClassAccessScopeAndValidation.EmployeePrivate)

Keep Derived Fields Outside The Case Class

case class NonFinalEmployee(firstName: String, lastName: String, ssn: String)

// Method 1 for adding derived fields

// Use a trait and extend Employee case class with trait containing the derived field

trait FullNameDerived:

 self: NonFinalEmployee =>

Note: The author of this article prefers method 2 for looking cleaner and being more extensible.
Besides, we can still keep the case class final as well.

 def fullNameDerived1 =

 s"$firstName $lastName"

class EmployeeData(firstName: String, lastName: String, ssn: String)

 extends NonFinalEmployee(firstName, lastName, ssn) with FullNameDerived

val employeeData: EmployeeData = new EmployeeData("John", "Wick", "111-11-1111")

println(employeeData.fullNameDerived1)

// Method 2 for adding derived fields

// Use extension method and extend Employee with derived field instead

extension (c: Employee)

 def fullNameDerived2: String=

 s"${c.firstName} ${c.lastName}"

val employee = Employee ("John", "Wick", "111-11-1111")

println(employee.fullNameDerived2)

Revision #10
Created Sun, Aug 6, 2023 12:36 AM by hernan saab
Updated Sun, Aug 6, 2023 7:30 PM by hernan saab

https://blog.code-with-no-regrets.com/user/1
https://blog.code-with-no-regrets.com/user/1

